Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Braz. j. biol ; 84: e251289, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355889

RESUMO

Abstract The present research was made to determine the micronuclei and cytotoxic capacity of the antidepressant venlafaxine in an in vivo acute and subchronic assays in mouse. In the first study, we administered once 5, 50, and 250 mg/kg of the drug, and included a negative and a daunorubicin treated group. Observations were daily made during four days. The subchronic assay lasted 5 weeks with daily administration of venlafaxine (1, 5, and 10 mg/kg) plus a negative and an imipramine administered groups. Observations were made each week. In the first assay results showed no micronucleated polychromatic erythrocytes (MNPE) increase, except with the high dose at 72 h. The strongest cytotoxic effect was found with 250 mg/kg at 72 h (a 51% cytotoxic effect in comparison with the mean control level). In the subchronic assay no MNPE increase was found; however, with the highest dose a significant increase of micronucleated normochromatic erythrocytes was observed in the last three weeks (a mean of 51% respect to the mean control value). A cytotoxic effect with the two high doses in the last two weeks was observed (a polychromatic erythrocyte mean decrease of 52% respect to the mean control value). Results suggest caution with venlafaxine.


Resumo A presente pesquisa foi feita para determinar a capacidade micronuclei e citotóxica do antidepressivo venlafaxina em ensaios agudos e subcrônicos in vivo em camundongos. No primeiro estudo, administramos uma vez 5, 50 e 250 mg/kg do medicamento e incluímos um grupo negativo e um grupo tratado com daunorubicina. As observações foram feitas diariamente durante quatro dias. O ensaio subcrônico durou cinco semanas com administração diária de venlafaxina (1, 5, e 10 mg/kg) mais um grupo negativo e um grupo administrado de imipramina. As observações foram feitas a cada semana. No primeiro ensaio, os resultados não mostraram aumento de eritrócitos policromáticos micronucleados (MNPE), exceto com a dose elevada a 72 h. O efeito citotóxico mais forte foi encontrado com 250 mg/kg a 72 h (um efeito citotóxico de 51% em comparação com o nível médio de controle). No ensaio subcrônico não foi encontrado aumento de MNPE; entretanto, com a dose mais alta, um aumento significativo de eritrócitos normocromáticos micronucleados foi observado nas últimas três semanas (média de 51% em relação ao valor médio de controle). Foi observado um efeito citotóxico com as duas altas doses nas últimas duas semanas (uma diminuição média de 52% em relação ao valor médio de controle dos eritrócitos policromáticos). Os resultados sugerem cautela com a venlafaxina.


Assuntos
Animais , Coelhos , Dano ao DNA , Antineoplásicos , Testes para Micronúcleos , Relação Dose-Resposta a Droga , Eritrócitos , Cloridrato de Venlafaxina/toxicidade
2.
Reprod Toxicol ; 120: 108451, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532207

RESUMO

The chronic use of selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors (SNRIs) may result in human gynecomastia, mammoplasia, galactorrhea, and elevated breast cancer risk. As antidepressants are frequently used for postpartum depression (PPD) treatment, this study investigated the adverse effects of lactational exposure to venlafaxine (VENL, a selective SNRI) on mammary gland development and carcinogenesis in F1 female offspring. Thus, lactating Wistar rats (F0) received VENL by oral gavage at daily doses of 3.85, 7.7, or 15.4 mg/kg (N = 9, each group) from lactational day (LD 1) until the weaning of the offspring (LD 21). F1 female offspring were euthanized for mammary gland, and ovary histological analyses on the post-natal day (PND) 22 and 30 (1 pup/litter/period, N = 9, each group). At PND 22, other females (2 pups/litter, N = 18, each group) received a single dose of carcinogen N-methyl-N-nitrosourea (MNU, 50 mg/kg) intraperitoneally (i.p.) for tumor susceptibility assay until PND 250. Tumor incidence and latency were recorded and representative tumor samples were collected for histopathology. The results indicate that lactational exposure to VENL did not alter the development of the mammary gland (epithelial ductal tree or the mean number of terminal end buds), or the ovary (weight and primary, secondary, tertiary, and Graafian follicles) in prepubertal F1 female offspring. In addition, VENL exposure did not influence tumor incidence or tumor latency in adult female offspring that received MNU. Thus, the findings of this animal study indicated that lactational VENL exposure, a period similar to human PPD, did not exert an adverse effect on the mammary gland development at the prepubertal phase or on chemically induced mammary tumorigenesis in adult F1 female rats.


Assuntos
Lactação , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Masculino , Humanos , Ratos , Animais , Cloridrato de Venlafaxina/toxicidade , Ratos Wistar , Carcinogênese , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
3.
Artigo em Inglês | MEDLINE | ID: mdl-37192702

RESUMO

The growing consumption of psychoactive drugs, such as Venlafaxine (VFX), can negatively affect the organisms. Our main hypothesis is to investigate if VFX at human-used doses could exert effects on the behavioral, nervous, and antioxidant systems of two different organisms, zebrafish and C. elegans. We evaluated the effect of acute exposure to VFX at four concentrations (0, 37.5, 75, and 150 mg L-1) using toxicological indicator assessments. We evaluated zebrafish behavior using the novel tank test (NTT), social preference test (SPT), cortisol levels, acetylcholinesterase (AChE) activity, and antioxidant system. In C. elegans, we evaluated body bends, defecation cycles, pharyngeal pumping, AChE activity, and antioxidant system. C. elegans do not show alterations in the behavior analysis of pharyngeal pumping and body bends. Instead, the defecation cycle was increased in the highest dose of VFX. AChE activity also does not have differences compared to the control, the same occurs in lipid peroxidation rates. These results showed that nematodes were more resistant to changes when exposed to VFX. Zebrafish exposed to VFX showed changes in the NTT and SPT test, mainly in the anxiolytic pattern, suggesting that VFX alters this anxiolytic-like behavior. Comparing both organisms, we can observe that zebrafish seems to be more sensitive in this neurotoxicological evaluation.


Assuntos
Ansiolíticos , Peixe-Zebra , Animais , Humanos , Cloridrato de Venlafaxina/toxicidade , Caenorhabditis elegans , Acetilcolinesterase , Antioxidantes
4.
Artigo em Inglês | MEDLINE | ID: mdl-37004898

RESUMO

Venlafaxine (VFX), a commonly prescribed antidepressant often detected in wastewater effluent, and acute temperature elevations from climate change and increased urbanization, are two environmental stressors currently placing freshwater ecosystems at risk. This study focused on understanding if exposure to VFX impacts the agitation temperature (Tag) and critical thermal maximum (CTmax) of zebrafish (Danio rerio). Additionally, we examined the interactive effects of VFX and acute thermal stress on zebrafish heat shock and inflammatory immune responses. A 96 h 1.0 µg/L VFX exposure experiment was conducted, followed by assessment of thermal tolerance via CTmax challenge. Heat shock proteins and pro-inflammatory immune cytokines were quantified through gene expression analysis by quantitative PCR (qPCR) on hsp 70, hsp 90, hsp 47, il-8, tnfα, and il-1ß within gill and liver tissue. No significant changes in agitation temperature between control and exposed fish were observed, nor were there any differences in CTmax based on treatment. Unsurprisingly, hsp 47, 70, and 90 were all upregulated in groups exposed solely to CTmax, while only hsp 47 within gill tissue showed signs of interactive effects, which was significantly decreased in fish exposed to both VFX and CTmax. No induction of an inflammatory response occurred. This study demonstrated that environmentally relevant concentrations of VFX have no impact on thermal tolerance performance in zebrafish. However, VFX can cause diminished function of protective heat shock mechanisms, which could be detrimental to freshwater fish populations and aquatic ecosystems as temperature spikes become more frequent from climate change and urbanization near watersheds.


Assuntos
Ecossistema , Peixe-Zebra , Animais , Peixe-Zebra/genética , Cloridrato de Venlafaxina/toxicidade , Resposta ao Choque Térmico , Antidepressivos
5.
J Hazard Mater ; 448: 130909, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860067

RESUMO

Pharmaceutical compounds and their metabolites are found in natural and wastewater. However, investigation of their toxic effects on aquatic animals has been neglected, especially for metabolites. This work investigated the effects of the main metabolites of carbamazepine, venlafaxine and tramadol. Zebrafish embryos were exposed (0.1-100 µg/L) for 168hpf exposures to each metabolite (carbamazepine-10,11-epoxide, 10,11-dihydrocarbamazepine, O-desmethylvenlafaxine, N-desmethylvenlafaxine, O-desmethyltramadol, N-desmethyltramadol) or the parental compound. A concentration-response relationship was found for the effects of some embryonic malformations. Carbamazepine-10,11-epoxide, O-desmethylvenlafaxine and tramadol elicited the highest malformation rates. All compounds significantly decreased larvae responses on a sensorimotor assay compared to controls. Altered expression was found for most of the 32 tested genes. In particular, abcc1, abcc2, abcg2a, nrf2, pparg and raraa were found to be affected by all three drug groups. For each group, the modelled expression patterns showed differences in expression between parental compounds and metabolites. Potential biomarkers of exposure were identified for the venlafaxine and carbamazepine groups. These results are worrying, indicating that such contamination in aquatic systems may put natural populations at significant risk. Furthermore, metabolites represent a real risk that needs more scrutinising by the scientific community.


Assuntos
Carbamazepina , Tramadol , Cloridrato de Venlafaxina , Animais , Carbamazepina/toxicidade , Succinato de Desvenlafaxina/toxicidade , Compostos de Epóxi/toxicidade , Larva/efeitos dos fármacos , Tramadol/toxicidade , Cloridrato de Venlafaxina/toxicidade , Peixe-Zebra
6.
J Appl Toxicol ; 43(3): 387-401, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36063371

RESUMO

Exposure to selective serotonin reuptake inhibitors can affect hormone-dependent processes, such as the brain sexual differentiation. Because the use of these antidepressants cause concern during lactation, we evaluated the possible effects of venlafaxine on lactational exposure and its late repercussions on reproductive parameters in male rats. Lactating rats were exposed to venlafaxine (3.85, 7.7, or 15.4 mg/kg/body weight; gavage), from lactational day 1 to 20. Venlafaxine and O-desmethylvenlafaxine residues were found in all milk samples of dams treated, demonstrating the lactational transfer of this antidepressant to the offspring. Although the maternal behavior was normal, the dams presented an increase in urea and uric acid levels in the groups treated with 7.7 and 15.4, respectively, as well as a spleen weight increased in the 3.85 and 15.4 groups. The male offspring showed a decrease in play behavior parameters in the intermediate dose group. Sperm analysis indicated a reduction in sperm motility in all treated groups. The androgen receptor expression in the hypothalamus was decreased in the highest dose group, although the sexual behavior had not been affected. In conclusion, venlafaxine was transferred through breast milk and promoted changes in play behavior, sperm quality, and hypothalamic androgen receptor (AR) content, which may indicate an incomplete masculinization of the brain of male offspring.


Assuntos
Lactação , Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Venlafaxina , Animais , Feminino , Masculino , Ratos , Lactação/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptores Androgênicos/efeitos dos fármacos , Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Cloridrato de Venlafaxina/toxicidade
7.
Neurotox Res ; 40(5): 1174-1190, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35819590

RESUMO

Depression is a leading cause of disability which at its worst leads to suicide. Its treatment relies on psychotherapy in combination with certain antidepressants (AD(s)) from various classes such as tricyclics, selective serotonin reuptake inhibitors, or serotonin and norepinephrine reuptake inhibitors (SNRIs). Among SNRIs, venlafaxine (VEN) is one such most commonly prescribed AD which is recently reported to be in the top 50 most prescribed drugs in the USA. Depression during pregnancy is a common condition, where prescribing an AD becomes necessary as untreated depression during pregnancy has its own complications for both mother and the child. This, probably, is why an incredible rise has been reported in prescribing ADs like VEN to pregnant women in the recent past, despite some studies, including the one from our own group, having reported the in-utero VEN-induced apoptotic neurodegeneration in the fetal neocortex and the consequent neurobehavioral anomalies in adulthood. However, there still exists a lack of insight into the effects of intrauterine exposures of VEN on other fetal brain regions like the hippocampus (HPC) and striatum (STR) and the consequent effects on their cognitive and emotional wellbeing in later life. Hence, this study has been conducted where pregnant Charles-Foster (CF) rats were oral gavaged with VEN (25, 40, and 50 mg/kg bw) from gestation day (GD) 05-19. On GD-19, half of the control and treated dams were euthanized to collect their fetuses. Fetal brains were dissected and processed for reactive oxygen species (ROS) estimation neurohistopathology and confocal microscopic studies. The remaining dams were allowed to deliver naturally, and litters were reared for up to 8 weeks then tested for their cognitive abilities by the Morris water maze test and for their emotionality by the Forced swimming test. Our results showed substantial neurocytoarchitectural deficits in both HPC and STR, along with enhanced ROS levels and apoptotic neurodegenerations. Furthermore, VEN-treated young rat offsprings displayed cognitive impairments and depressive behavior as the long-lasting impact of VEN in a dose-dependent manner. So it may be inferred that prenatal VEN-induced oxidative stress causes apoptotic neurodegeneration leading to neuronal loss in HPC and STR which consequently affects the development of the said brain areas resulting in impaired cognitive and emotional abilities of young adult offsprings. Therefore, extrapolating these findings in animal models, caution may be taken before prescribing VEN to pregnant women, especially during the sensitive phase of pregnancy.


Assuntos
Neocórtex , Efeitos Tardios da Exposição Pré-Natal , Inibidores da Recaptação de Serotonina e Norepinefrina , Animais , Feminino , Hipocampo/patologia , Humanos , Neocórtex/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Espécies Reativas de Oxigênio , Serotonina , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Inibidores da Recaptação de Serotonina e Norepinefrina/efeitos adversos , Cloridrato de Venlafaxina/toxicidade
8.
Environ Toxicol Chem ; 41(8): 1851-1864, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452529

RESUMO

Venlafaxine is a chiral antidepressant detected in aquatic compartments. It was recently included in the 3rd Watch List from the European Union. The present study aimed to investigate venlafaxine toxicity effects, targeting possible enantioselective effects, using two aquatic organisms, daphnia (Daphnia magna) and zebrafish (Danio rerio). Specimens were exposed to both racemate, (R,S)-venlafaxine (VEN), and to pure enantiomers. Acute assays with daphnia showed that up to 50 000 µg/L of the (R,S)-VEN induced no toxicity. Organisms were also exposed to sublethal concentrations (25-400 µg/L) of (R,S)-, (R)- and (S)-VEN, for 21 days. No significant effects on mortality, age at first reproduction, and size of the first clutch were observed. However, a decrease in fecundity was observed for both enantiomers at the highest concentration. Regarding zebrafish, the effects of venlafaxine on mortality, embryo development, behavior, biochemistry, and melanin pigmentation were investigated after 96 h of exposure to the range of 0.3-3000 µg/L. (R)-VEN significantly increased the percentage of malformations in comparison with (S)-VEN. Behavior was also enantiomer dependent, with a decrease in the total distance moved and an increase in avoidance behavior observed in organisms exposed to (R)-VEN. Despite the biochemical variations, no changes in redox homeostasis were observed. (R)-VEN also led to an increase in zebrafish pigmentation. The different susceptibility to venlafaxine and enantioselective effects were observed in zebrafish. Our results suggest that at environmental levels (R,S)-VEN and pure enantiomers are not expected to induce harmful effects in both organisms, but (R)-VEN increased malformations in zebrafish larvae, even at reported environmental levels. These results highlight the importance of including enantioselective studies for an accurate risk assessment of chiral pollutants. Environ Toxicol Chem 2022;41:1851-1864. © 2022 SETAC.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Estereoisomerismo , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/química , Peixe-Zebra
9.
Sci Total Environ ; 832: 155017, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395305

RESUMO

Venlafaxine and citalopram have been commonly found in surface water and may disrupt fish reproduction, yet the long-term impact and the underlying mechanism are largely unknown. Here, zebrafish were exposed to 0.1-100 µg/L venlafaxine and citalopram for their entire life cycle from embryo to adult, respectively. After exposure for 180 days, the lowest observable effective concentration (LOEC) of venlafaxine and citalopram to significantly reduce the mean number of egg production in adults were 10 and 1 µg/L, respectively, whereas the fertilization rate displayed no significant changes. Further, we investigated the impacts of venlafaxine and citalopram in a reproductive context, including sperm quality and reproductive behaviour. In contrast, venlafaxine and citalopram exposure did not affect sperm quality but caused a reduction of reproductive behaviour (e.g., mating duration and mating interval) of adults exposed to 1-10 µg/L of the antidepressant. Transcriptomic profiling of the whole ovary revealed that lifecycle venlafaxine and citalopram exposure significantly affected the Na+/Cl- dependent neurotransmitter transporters signaling. Moreover, immune system-mediated ovarian regeneration and creatine metabolism regulated energy metabolism were proposed as the novel mechanism in the observed effects. Taken together, our results highlight the risk of lifecycle venlafaxine and citalopram exposure to fish reproduction and provide novel perspectives for unveiling the mechanism of female reproductive dysfunction.


Assuntos
Comportamento Reprodutivo , Poluentes Químicos da Água , Animais , Antidepressivos , Citalopram , Feminino , Estágios do Ciclo de Vida , Masculino , Espermatozoides , Transcriptoma , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
10.
Aquat Toxicol ; 244: 106082, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35078056

RESUMO

Venlafaxine, a serotonin-noradrenaline reuptake inhibitor, is a widely used antidepressant drug routinely detected in aquatic environments. However, its potential impact on courtship behaviour in zebrafish is unknown. We tested the hypothesis that venlafaxine disrupts brain monoamine levels and molecular responses essential for courtship behaviour in zebrafish. Zebrafish (Danio rerio) were exposed to venlafaxine (1, 10, and 100 µg/L) for 20 days. We evaluated the molecular levels and neuronal basis of the effect of venlafaxine on courtship behaviour. Here, we show that venlafaxine inhibited courtship behaviour in zebrafish and increased the transcript levels of 5-ht1a and 5-ht2c while decreasing the transcript levels of genes involved in the dopaminergic system, including th1, th2, drd1b, and drd2b. Venlafaxine upregulated 5-HT levels and downregulated dopamine levels. Moreover, the subordinate fish from the venlafaxine-exposed group had significantly lower motor activity than the subordinate fish of the control group. Collectively, our results reveal that venlafaxine can disturb brain monoamine levels, affecting courtship behaviour in adult zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antidepressivos , Corte , Dopamina , Serotonina , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade
11.
Environ Pollut ; 299: 118898, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35081461

RESUMO

The beta-blocker atenolol (ATE), and the selective serotonin and norepinephrine reuptake inhibitor, venlafaxine (VEN) are frequently detected in municipal wastewater effluents, but little is known about their ecotoxicological effect on aquatic animals. Herein, ATE and VEN were selected to explore their accumulation and global DNA methylation (GDM) in zebrafish tissues after a 30-day exposure. Molecular dynamics (MD) stimulation was used to investigate the toxic mechanism of ATE and VEN exposure. The results demonstrated that ATE and VEN could reduce the condition factor of zebrafish. The bioaccumulation capacity for ATE and VEN was in the order of liver > gut > gill > brain and liver > gut > brain > gill, respectively. After a 30-day recovery, ATE and VEN could still be detected in zebrafish tissues when exposure concentrations were ≥10 µg/L. Moreover, ATE and VEN induced global DNA hypomethylation in different tissues with a dose-dependent manner and their main target tissues were liver and brain. When the exposure concentrations of ATE and VEN were increased to 100 µg/L, the global DNA hypomethylation of liver and brain were reduced to 27% and 18%, respectively. In the same tissue exposed to the same concentration, DNA hypomethylation induced by VEN was more serious than that of ATE. After a 30-day recovery, the global DNA hypomethylations caused by the two drugs were still persistent, and the recovery of VEN was slower than that of ATE. The MD simulation results showed that both ATE and VEN could reduce the catalytic activity of DNA Methyltransferase 1 (DNMT1), while the effect of VEN on the 3D conformational changes of the DNMT1 domain was more significant, resulting in a lower DNA methylation rate. The current study shed new light on the toxic mechanism and potential adverse impacts of ATE and VEN on zebrafish, providing essential information to the further ecotoxicological risk assessment of these drugs in the aquatic environment.


Assuntos
Atenolol , Peixe-Zebra , Animais , Bioacumulação , DNA , Metilação de DNA , Cloridrato de Venlafaxina/toxicidade
12.
Sci Total Environ ; 807(Pt 2): 150846, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34626640

RESUMO

Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.


Assuntos
Ecossistema , Fluoxetina , Animais , Antidepressivos/toxicidade , Peixes , Fluoxetina/toxicidade , Humanos , Cloridrato de Venlafaxina/toxicidade
13.
Aquat Toxicol ; 242: 106041, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856460

RESUMO

Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is a highly prescribed antidepressant and is detected at µg/L concentrations in waterways receiving municipal wastewater effluents. We previously showed that early-life venlafaxine exposure disrupted the normal development of the nervous system and reduces larval activity in zebrafish (Danio rerio). However, it is unclear whether the reduced swimming activity may be associated with impaired cardiac function. Here we tested the hypothesis that zygotic exposure to venlafaxine impacts the development and function of the larval zebrafish heart. Venlafaxine (0, 1 or 10 ng) was administered by microinjection into freshly fertilized zebrafish embryos (1-4 cell stage) to assess heart development and function during early-life stages. Venlafaxine deposition in the zygote led to precocious development of the embryo heart, including the timing of the first heartbeat, increased heart size, and a higher heart rate at 24- and 48-hours post-fertilization (hpf). Also, waterborne exposure to environmental levels of this antidepressant during early development increased the heart rate at 48 hpf of zebrafish larvae mimicking the zygotic deposition. The venlafaxine-induced higher heart rate in the embryos was abolished in the presence of NAN-190, an antagonist of the 5HT1A receptor. Also, heart rate dropped below control levels in the 10 ng, but not 1 ng venlafaxine group at 72 and 96 hpf. An acute stressor reduced the venlafaxine-induced heart rate at 48 hpf but did not affect the already reduced heart rate at 72 and 96 hpf in the 10 ng venlafaxine group. Our results suggest that the higher heart rate in the venlafaxine group may be due to an enhanced serotonin stimulation of the 5HT1A receptor. Taken together, early-life venlafaxine exposure disrupts cardiac development and has the potential to compromise the cardiovascular performance of larval zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antidepressivos/toxicidade , Embrião não Mamífero , Coração , Larva , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Braz J Biol ; 84: e251289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34932628

RESUMO

The present research was made to determine the micronuclei and cytotoxic capacity of the antidepressant venlafaxine in an in vivo acute and subchronic assays in mouse. In the first study, we administered once 5, 50, and 250 mg/kg of the drug, and included a negative and a daunorubicin treated group. Observations were daily made during four days. The subchronic assay lasted 5 weeks with daily administration of venlafaxine (1, 5, and 10 mg/kg) plus a negative and an imipramine administered groups. Observations were made each week. In the first assay results showed no micronucleated polychromatic erythrocytes (MNPE) increase, except with the high dose at 72 h. The strongest cytotoxic effect was found with 250 mg/kg at 72 h (a 51% cytotoxic effect in comparison with the mean control level). In the subchronic assay no MNPE increase was found; however, with the highest dose a significant increase of micronucleated normochromatic erythrocytes was observed in the last three weeks (a mean of 51% respect to the mean control value). A cytotoxic effect with the two high doses in the last two weeks was observed (a polychromatic erythrocyte mean decrease of 52% respect to the mean control value). Results suggest caution with venlafaxine.


Assuntos
Antineoplásicos , Dano ao DNA , Animais , Relação Dose-Resposta a Droga , Eritrócitos , Camundongos , Testes para Micronúcleos , Cloridrato de Venlafaxina/toxicidade
15.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769286

RESUMO

The incidence of depression among humans is growing worldwide, and so is the use of antidepressants. However, our fundamental understanding regarding the mechanisms by which these drugs function and their off-target effects against human sexuality remains poorly defined. The present study aimed to determine their differential toxicity on mouse spermatogenic cells and provide mechanistic data of cell-specific response to antidepressant and neuroleptic drug treatment. To directly test reprotoxicity, the spermatogenic cells (GC-1 spg and GC-2 spd cells) were incubated for 48 and 96 h with amitriptyline (hydrochloride) (AMI), escitalopram (ESC), fluoxetine (hydrochloride) (FLU), imipramine (hydrochloride) (IMI), mirtazapine (MIR), olanzapine (OLZ), reboxetine (mesylate) (REB), and venlafaxine (hydrochloride) (VEN), and several cellular and biochemical features were assessed. Obtained results reveal that all investigated substances showed considerable reprotoxic potency leading to micronuclei formation, which, in turn, resulted in upregulation of telomeric binding factor (TRF1/TRF2) protein expression. The TRF-based response was strictly dependent on p53/p21 signaling and was followed by irreversible G2/M cell cycle arrest and finally initiation of apoptotic cell death. In conclusion, our findings suggest that antidepressants promote a telomere-focused DNA damage response in germ cell lines, which broadens the established view of antidepressants' and neuroleptic drugs' toxicity and points to the need for further research in this topic with the use of in vivo models and human samples.


Assuntos
Antidepressivos/toxicidade , Antipsicóticos/toxicidade , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Espermatogênese/efeitos dos fármacos , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Amitriptilina/toxicidade , Animais , Linhagem Celular , Escitalopram/toxicidade , Fluoxetina/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Imipramina/toxicidade , Masculino , Camundongos , Mirtazapina/toxicidade , Modelos Biológicos , Olanzapina/toxicidade , Especificidade de Órgãos , Reboxetina/toxicidade , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Cloridrato de Venlafaxina/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-34454087

RESUMO

Selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) are prescribed for clinical depression and detected in aquatic ecosystems. The main aim of this study was to explore and evaluate transcriptional responses of neurotransmitter genes in the brain of a marine fish species, European seabass, and to analyze global brain transcriptomic changes by a RNA-seq technology (MACE, massive analysis of cDNA ends). The juveniles were exposed to two psychopharmaceuticals: (i) fluoxetine (FLX) at the concentration of 0.5 µg/L and 50 µg/L; (ii) venlafaxine (VENX) at the concentration of 0.01 µg/L and 1 µg/L. The exposures were performed for 21 days, followed by a 7-day recovery period to assess the reversibility of effects. Both psychopharmaceuticals affected differentially the neurotransmitter mRNA expression analyzed by RT-qPCR (serotonin receptors: 5-ht3a, 5-ht3b; dopamine receptors: d2, d3; neurotransmitter transporter: sert, vmat; degrading enzyme: mao). Transcriptomic analyses after 21 days of exposure revealed 689 and 632 significant different transcripts by FLX at 0.5 and 50 µg/L, respectively, and 432 and 1250 by VENX at 0.01 and 1 µg/L, respectively, and confirmed different mechanism of toxicity between both compounds. At environmental concentrations, more general pathways including energy metabolism were affected, while at the higher concentration effects on neurotransmitter pathways were observed (FLX: exocytosis and vesicle formation; VENX: small molecule catabolism regulating dopamine and tyrosine level). These results provided new insights into the chronic effects of psychopharmaceutical compounds on marine fish and suggest the need of a separate ecotoxicological risk analysis.


Assuntos
Bass/genética , Encéfalo/efeitos dos fármacos , Fluoxetina/toxicidade , Cloridrato de Venlafaxina/toxicidade , Animais , Antidepressivos de Segunda Geração/toxicidade , Bass/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Peixes/metabolismo , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
17.
Environ Res ; 202: 111665, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34252433

RESUMO

The antidepressant venlafaxine can be found at levels nearing µg/L in waterways receiving municipal wastewater effluent, exposing non-target organisms, such as fish, to this chemical. We showed previously that zygotic exposure to venlafaxine alters neurodevelopment and behaviour in zebrafish (Danio rerio) larvae. Here, we tested the hypothesis that the zygotic deposition of venlafaxine disrupts endocrine pathways related to growth in zebrafish. This was carried out by microinjecting embryos (1-4 cell stage) with either 0, 1, or 10 ng venlafaxine. Zygotic venlafaxine deposition reduced the growth of fish after 30 days post-fertilization. Specific growth rate was particularly impacted by 1 ng venlafaxine. This growth retardation corresponded with the disruption of endocrine pathways involved in growth and metabolism. Venlafaxine exposed embryos displayed reduced transcript abundance of key genes involved in anabolic hormone action. Early-life venlafaxine exposure also reduced whole-body insulin and glucose content in juveniles. Target-tissue glucose uptake measurements indicated that high venlafaxine deposition preferentially increased glucose uptake to the brain. Zygotic venlafaxine did not affect feed intake nor altered the transcript abundance of key feeding-related peptides. Taken together, zygotic venlafaxine deposition compromises zebrafish growth by disrupting multiple endocrine pathways, and this study has identified key markers for potential use in risk assessment.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Larva , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade , Zigoto
18.
Chemosphere ; 277: 130169, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33794438

RESUMO

Antidepressants in coastal waters may affect ontogeny of predatory behaviour in cuttlefish, which may, as a result, affect growth of newly-hatched cuttlefish. We investigated the effects of two of the most prescribed antidepressants, fluoxetine (FLX) and venlafaxine (VEN) in environmentally realistic concentrations on the predatory behaviour of hatchlings of Sepia officinalis. Newly-hatched cuttlefish were exposed from 1 h (i.e., day 1) to 5 days after hatching to either FLX alone (5 ng·L-1) or combined with VEN (2.5 ng·L-1 or 5 ng·L-1 each) to simulate an environmentally realistic exposure scenario. Their predatory behaviour was analysed through several parameters: prey detection, feeding motivation and success in catching the prey. All parameters improved in control animals over the first five days. The combination of FLX and VEN at 5 ng·L-1 each altered the predatory behaviour of the hatchlings by increasing the latency before attacking the prey, i.e., reducing feeding motivation, as well as by reducing the number of successful attacks. The changes in predatory behaviour tended to reduce food intake and affected growth significantly at 28 days post-hatching. Exposures to either FLX at 5 ng·L-1 or FLX and VEN in mixture at 2.5 ng·L-1 each tended to produce similar effects, even though they were not statistically significant. It is likely that the antidepressants affect maturation of the predatory behaviour and/or learning processes associated with the development of this behaviour. The slightest delay in maturation processes may have detrimental consequences for growth and population fitness.


Assuntos
Fluoxetina , Poluentes Químicos da Água , Animais , Decapodiformes , Fluoxetina/toxicidade , Comportamento Predatório , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Aquat Toxicol ; 234: 105808, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774504

RESUMO

Juvenile crabs of Carcinus maenas thrive in coastal waters reputed to be the receptacle of continental pollution. Amongst the many pollutants encountered, antidepressants, such as fluoxetine (FLX) and venlafaxine (VEN), often detected at the ng•L-1 range, are particularly worrying because of their action on the levels of monoamines, such as serotonin, noradrenaline and dopamine. In crustaceans, those monoamines are involved in colour change through their action on neuropeptide hormones. In addition, they are known to have a role in different behaviours, such as locomotion. Both colour change and locomotion are strategies used by juvenile crabs to hide and escape from predators. To investigate if the presence of antidepressants may alter behaviours of ecological importance, juvenile crabs were exposed to environmentally realistic concentrations of either 5 ng•L-1 of FLX alone or in combination with VEN at 5 ng•L-1. The ability to change colour depending on the environment and the locomotor activity of juvenile crabs were monitored weekly over 25 days. Animals exposed to antidepressants displayed a different pattern of colour change than the controls, especially those exposed to the combination of FLX and VEN at 5 ng•L-1 each, and were less efficient to adapt to their environment, i.e., they were not as pale and not as dark as controls or crabs exposed to FLX at 5 ng•L-1. Moreover, juvenile crabs exposed to the combination of antidepressants exhibited an enhanced locomotor activity throughout the exposure period with a higher velocity and distance moved as well as more time spend moving. The alteration of cryptic behaviours, such as colour change and locomotion by antidepressants persistently present in marine environment at low concentrations may have an impact on the survival of juvenile of C. maenas on the long term.


Assuntos
Antidepressivos/toxicidade , Braquiúros/fisiologia , Locomoção/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Cor , Fluoxetina/toxicidade , Cloridrato de Venlafaxina/toxicidade
20.
Environ Pollut ; 274: 116535, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524651

RESUMO

Ubiquitous use of antidepressants has resulted in increased concentrations of these pharmaceuticals in waterways receiving municipal wastewater effluent. Amongst these, venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is commonly found at concentrations surpassing 1 ppb in surface waters. We recently showed that the deposition of venlafaxine in zebrafish (Danio rerio) embryos impacts neural development in the hypothalamus, suggesting the possibility of neuroendocrine disruptions due to this antidepressant. Here, we tested the hypothesis that early developmental exposure to venlafaxine disrupts the long-term functioning of the hypothalamus-pituitary-interrenal (HPI) axis in zebrafish. Embryos (1-4 cell stage) were injected with either 0, 1, or 10 ng venlafaxine, and the ontogeny of cortisol content, as well as changes in cortisol levels following a stressor in larvae and adults were assessed across 3 generations. Zygotic venlafaxine exposure did not affect the ontogeny of cortisol production, but there was a disruption in the cortisol response to stressor exposure, which was also evident in multiple generations. In the F0 generation, venlafaxine exposure did not affect cortisol levels in response to stressor exposure in larvae, but adult females, and not males, showed an attenuated cortisol response compared to control fish. This reduction in cortisol levels in the females was rescued by stimulation with adrenocorticotropic hormone, suggesting that the disruption was at the level of the hypothalamus-pituitary axis. Venlafaxine-mediated disruption in HPI axis functioning was also evident in the F1 and F2 generations, including impaired cortisol responses to a stressor in adult female and larval fish, respectively. Taken together, our results suggest that venlafaxine is an endocrine disruptor, and early developmental exposure to this antidepressant may have long-term and generational consequences on cortisol stress axis activity in zebrafish.


Assuntos
Hidrocortisona , Peixe-Zebra , Animais , Feminino , Larva , Estresse Fisiológico , Cloridrato de Venlafaxina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...